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ABSTRACT

An investigation of the fatigue performance test scatter in titanium alloys and steels has
been made with the intent of identifying their variability in terms of a distribution and its
shape parameter. The two-parameter Weibull distribution was selected for matching the
fatigue variability of these two materials. About 1200 groups of titanium alloy and 800 groups
of steels were collected and analyzed to determine the feasibility of establishing a typical dis-
tributional Weibull shape parameter for these materials. A Weibull*distribution shape para-
meter of 3.0 is suggested for titanium alloys and those steels with a 240-ksi strength level or
less. Steels having greater than a 240-ksi strength level seem better represented by a shape
parameter of 2.2. In a further study, the choice of a distribution most aptly matching fatigue
variability was explored with the use of previously collected extensive aluminum alloy and the
titanium alloy data. The behavior of these data was compared to that of equivalent log-
-normal, two-parameter, three-parameter, or a devised "symmetric" Weibull distribution.
Monte-Carlo simulation was used to form empiric distributions from parent analytical popula-
tions. These distributions were then compared to the distributions of the collected fatigue test
data, keeping the simulated data group sizes and number of groups the same as those for the
test data. No appreciable difference between data and the selected equivalent theoretical dis-
tributions is evident for probabilities of failure in the range of 0.05 to 0.95. For a failure like-
lihood less than 0.05 the Weibull distribution seems more representative of the data extremes.
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SECTION I

INTRODUCTION

Premature or unexpected initiation of fatigue damage in the structural system of an air-

plane fleet can be a serious detriment to the operational use and availability of that fleet. To

minimize the influence of this variability in structural fatigue performance, a scatter factor is

generally applied to nominal, representative, mean, or median data to ensure or obtain a

reliable estimate of some level of minimal fatigue performance. Hopefully, a goal of even no

fatigue damage initiation may be contemplated in the process of applying the scatter factor.

Judgment and/or probabilistic considerations have generally guided the selection or

development of these scatter factors. The application of reliability analysis techniques to

placing lower bounds on the initiation of fatigue damage requires the definition of the distri-

butional characteristics of fatigue scatter in materials and their structures. The log-normal and

Weibull distributions have been used in the past to resolve these probabilistic features of relia-

bility analysis. Actually, the central characteristics of fatigue variability can be reasonably

identified with a few fatigue test specimens at some level of confidence by presuming the

identification of the distribution and its shape parameter. However, fatigue testing in itself is

complicated and expensive in time and dollars. Hence, the positive identification of the distri-

bution, that truly identifies fatigue variability over the entire range of scatter likely to occur

in a material, becomes a formidable or impossible task under the usual circumstances of the

design phase. Furthermore, the initial appearance of fatigue damage in a fleet of aircraft trig-

gers unanticipated action including a fleet-wide special inspection, continued fleet surveillance,

repair, or rework that may even penetrate back to the production line in certain circumstances

until the difficulty is resolved.

In an approach to the application of reliability analysis procedures to fatigue perform-

ance assessment, reference 1 introduces the concept of order statistic or "first" failure in a

fleet or group of parts. Instead of design evaluation to merely a probable level of fatigue per-

formance at a selected confidence level, a reliability goal is suggested to identify the occur-

rence likelihood of the first, or immediately successive, fatigue crack initiation in the fleet of

aircraft. Application of this procedure really needs identification of the distributional char-

acteristics of fatigue performance over both the central and the extremely remote lower limits

of fatigue behavior. By examining large quantities of available fatigue test data and accounting

for sampling errors (i.e., limited numbers of identical specimens identically tested) some

guidance may be obtainable in the selection of both the basic distribution and its shape para-

meter to represent fatigue variability. The variability in aluminum alloy was studied in refer-

ence 1, while this work presents the results of a review of the variability in titanium alloys and

steels and an investigation to determine the likely distribution and its shape parameter.



SECTION I1

EVALUATION OF SCATTER IN TITANIUM ALLOY
AND STEEL FATIGUE DATA

Fatigue variability in structural titanium alloys and steels, as demonstrated by existing
test data, was examined in this study with the intent of identifying a representative distri-
bution and its likely shape parameter for application to the reliability analysis system devel-
oped in reference 1. The scope of this investigation has been limited to a fairly thorough,
though not exhaustive, survey of the available literature.

Approximately 40 references on titanium and a similar number on high-strength steel
were found to contain suitable data. These data amount to approximately 1200 groups of
titanium and 800 groups of steel results. The selection of the data has followed the guidelines
outlined in reference 1 in that information was limited to those test data which had similarity
with aircraft structural applications. Consequently, results from the considerable amount of
information on unnotched specimens or rotating beam tests have not been included in the
studies.

These selected data, which have been summarized in appendix II of this report, were
subjected to statistical analysis using the "first-two-ordered-failures estimator" described in
reference 1. This estimator, which is both simple and speedy, was used because of the large
amount of data for analysis. The task involved the computation of a shape parameter for each
of the hundreds of data groups investigated, the determination of the cumulative frequency
distribution of the shape parameters, and the calculation of the weighted mean value of the
shape parameter of each set of pooled data. The weighted mean value was used to take into
account the variation in sample sizes within each pooled data set. Reference I has shown that
this estimator, when used to analyze a mass of data to obtain a central-tendency value of their
shape parameter, is capable of giving an answer which is quite comparable with that obtained
by using a "maximum likelihood estimator." The results of the statistical analysis are pre-
sented in figures 1 through 14 and tables I through V.

The initial discussion will be limited to the titanium results. As mentioned earlier,
approximately 1200 selected groups of data were collected and analyzed. The reporting period
for these data ranged from August 1958 to July 1969 and is believed to be fairly representa-
tive of current titanium structural applications. The data were limited to the two common
alloys of Ti-6A1-4V and Ti-8A1-lMo-1V in the mill-annealed, duplex-annealed, solution-
treated-and-aged, and solution-treated-and-overaged conditions for the former and the mill-
annealed, duplex-annealed, and triplex-annealed conditions for the latter. For the initial ana-
lyses, no distinction was made for the various conditions but all data simply pooled according
to alloy type. Figure 1 illustrates the similarity in the scatter of the two alloys by comparing
the cumulative frequency of the shape parameter estimates from 541 groups of Ti-6AI-4V
against that obtained from 586 groups of Ti-8AI-lMo-l V. It is noted that the Ti-6AI-4V alloy
tends toward slightly larger scatter, as the distribution curve lies consistently to the right of
the Ti-8AI-1Mo-IV curve. The result, as shown, is that the weighted mean value of shape para-
meter of the Ti-6AI-4V data is slightly larger than the weighted mean value for Ti-8AI- 1 Mo-I V.
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These two groups of data were then pooled, so that material alloy distinction was lost
before subdividing into the specimen-type groups identified in figure 2. It can be seen that the
variation between the results from 637 groups of monolithic notched data and 488 groups of
simple structural simulator specimens is marginal, with the notched data having slightly lower
scatter at the low percentiles but also fractionally more scatter at the higher percentiles. The
net result is that the weighted means of both groups are virtually identical.

A test was next conducted to determine the effect of fatigue testing at room tempera-
ture, at elevated temperature, or at lowered temperature. However, insufficient data of the
latter category were analyzed, so the results plotted in figure 3 compare only room tempera-
ture and elevated temperature fatigue data. This study demonstrates that both data groups are
comparable, except for the higher percentiles where the elevated temperature curve falls away,
indicating slightly higher scatter. This fall-off is reflected in the higher weighted mean shape
parameter of the elevated temperature data. It should be noted that the 825 groups of room
temperature results contain almost three times the information contained by the 279 groups
of elevated temperature data and conceivably could account for the variation noted.

The next test studied range of cyclic life as the parameter, and the results are shown
plotted in figure 4. The constant-amplitude fatigue test data were subdivided into five groups
based on cyclic life. Four of these groups are identified in figure 4. The fifth group, which
contained low-life data (i.e., <103 cycles), did not contain sufficient data to arrive at a mean-
ingful result and so was not plotted. An undesirable trend is evident from this figure, namely
that scatter increased with increasing life. This trend, which has been frequently reported in
the literature, was not observed in the study on aluminum, see figure 5, which shows scatter as
fairly constant regardless of life range. Returning to the titanium results, it is noted that curves
(a) to (c), although different from each other, are closer together than curve (d), which shows
very large scatter. Therefore, it was decided to delete the data contained in this group from
the total data sample, to negate the influence of this higher life, large-scatter sample.

Table I compares the weighted mean shape parameter values resulting from the series of
tests mentioned previously. The column of results on the left is based on the total analyzed
data, whereas the column on the right excludes the 111 groups of data which contained
fatigue results with cyclic lives exceeding 4. (10)5 cycles of constant-amplitude loading. As
expected, the right column shows lower values of scatter. Figure 6 compares the results from
all the data against the results when data were restricted to less than 4. (10) 5 cycles. It is
obvious that the latter case has the lower scatter. It was also noted from the table I results that
the individual values of the mean shape parameters were closer together for the restricted data.
The comparison of room temperature and elevated temperature results, figure 3, had shown
the most discrepancy. Consequently, this same comparison was made, using the restricted data
sample, and plotted on figure 7. Comparing figure 3 with figure 7 shows that in the latter case
the two plotted curves are closer together, that they have both shifted to the left, and that the
difference in the weighted means is reduced.

During extraction and summarization of the titanium data it was observed that data ref-
erence 232 (see appendix II) contained constant-amplitude fatigue test results for different
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stages of fatigue damage. It was decided to give this reference a closer scrutiny and to analyze
the results separately. Four items of information were obtainable from the tabulated results.
These were:

* Number of cycles to initial, minute crack

* Number of cycles to repropagation of the crack of predetermined size, when the
test was recontinued at a lowered maximum stress level

* Number of cycles to total failure

• Increment of cycles between start of crack repropagation and specimen failure

Weibull shape parameter distributions for these four conditions are plotted in figure 8 as
curves (a), (b), (c), and (d), respectively. The data for curve (a), scatter to initial crack, were
grouped according to the test load and crack length. Within these groups, individual crack
lengths differed by less than 0.001 in. The data for curve (b) were considered as an independ-
ent set representing "initial failure" of a specimen with a fatigue crack. It should be noted that
the data for curves (b) to (d) were grouped according to test load level and nominal crack
length, and differences in initial crack length up to 0.02 in. were observed. As the sampling of
data was so small, no attempt was made to determine a mean value of shape parameter, and
figure 8 is presented simply to illustrate the trend of the data. It can be seen that the scatter in
times to initial cracking of the uncracked specimens, curve (a), is considerably lower than the
scatter in times to crack repropagation of the specimens containing small fatigue cracks, curve
(b). However, scatter in times to failure of these precracked specimens, curve (c), is quite simi-
lar to that for initial cracking of the uncracked specimens. This "coming-together" of these
scatter curves when scatter at the intermediate stage was so large could be explained if the
scatter of the increments of life during crack propagation to failure was lower than the scatter
in lives to initial cracking. Curve (d) shows this to be exactly the case. It would appear from
this survey that scatter during separate phases of fatigue life can be quite different, but at the
same time these phases are not independent of each other.

A somewhat smaller amount of data has been analyzed on high-strength steel, in current
use, than for the titanium investigation, but nevertheless certain similar trends have become
apparent. The results obtained have been plotted on figures 9 through 14 to provide illustra-
tion of these trends, and the weighted mean shape parameters are tabulated in tables 11 to V
for reference.

Figure 9 compares three common categories of high-strength alloys. It should be noted
that the plotted curves do not have the same degree of confidence, as they were generated
from quite different amounts of data. For example, the austenitic stainless steel curve was
based on estimates from 48 groups, whereas the stainless steel curve was obtained from 3 14
data groups. However, the plots are presented to demonstrate the trend of alloy variability.
Moreover, if the study had been limited to those categories containing at least 100 groups of
data the trend would be unaltered, as the alloy and stainless steels show similar levels of scat-
ter but the 18% nickel maraging steel demonstrates a larger amount of scatter. The grouping of
the curves indicates several levels of scatter, the lowest coming from the austenitic stainless
steels and the highest from the nickel maraging steels. The remaining alloys investigated, such
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as alloy steel, intermediate alloy steel, stainless steel, and superalloys were noted to fall
between these two extremes, see table II.

It was noted in figure 9 that the alloys which tended toward the lower strength level had
a tendency toward lower scatter, and those of a higher strength level toward higher scatter. It
was therefore decided to conduct a test based on strength level only, in which the identity of
the alloy was unimportant. Figure 10 plots the results of this test, and it is immediately appar-
ent that the earlier conjecture was indeed correct and that scatter increases with increasing
strength level. Again, as in the preceding figure, the extremes and an intermediate distribution
of scatter have been plotted for illustration, the lowest for steels below 160-ksi ultimate
strength and the highest for steels above 280-ksi ultimate strength. It should be noted that the
curve showing least scatter had the smallest sample size and consequently appears rather
erratic. However, it is believed that the trend of the curve is reliable and can be compared with
the other plotted curves and the values given in table II.

Figure 11 looks at scatter as a function of cyclic life under constant-amplitude testing.
The resultant trend shows that scatter increases with increasing cyclic life. This is the same
conclusion reached in the titanium study described earlier, and, as mentioned before, is in
contradiction with the aluminum results.

Variations of the shape parameters with type of steel, strength range, and cyclic life are
presented in tables III through V. Table III shows typical shape parameters for high-strength
steels varying with three strength ranges. It can be seen that there are no definite trends for
the variations in scatter with the type of steel within these strength ranges.

Table IV compares the typical shape parameters for stainless steels varying with strength
and life. The trend shows that scatter increases with increasing cyclic life, as was shown for the
total group of steels in figure 11 and table II. A similar trend for increasing scatter is also
shown for the two strength ranges indicated.

Table V shows the breakdown of scatter with cyclic life for steels with strengths below
and above 240 ksi. It is shown that cyclic life is definitely a parameter in both strength ranges.
However, there appear to be appreciable differences between the shape parameters for the
same life range, excluding lives > 4. (10) 5 cycles, in these strength ranges. These observed
trends should be investigated further.

Figure 12 illustrates the comparison between the monolithic notched data and those of
simple joints. The latter curve contains approximately half the data of the former but never-
theless shows a similarity to it. The weighted mean values given in table II also show agree-
ment, and it can be concluded that this is not a parameter that needs much consideration.

During analysis of the steel data, it was observed that data from reference 303 con-
tributed excessively to the shape parameter for the elevated temperature data. Figure 13
shows the effect of the 15 groups of data in reference 303 on the cumulative frequency distri-
butions of all elevated temperature data (130 groups). Because of this large increase in scatter
contributed by such a small group of data (i.e., %t 9% of total), reference 303 is currently
omitted from the existing steel fatigue data bank.
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Figure 14 also compares the room temperature results against those given by elevated
temperature data. It can be seen that there is a disparity in sample size, with the room temper-
ature data sample considerably larger. However, the two distributions plotted are fairly simi-
lar, as are their weighted means, and therefore this would not appear to be a major parameter
for further consideration.

The conclusion to be drawn from the preceding discussion is that the investigation has
revealed a few uncomfortable, although not entirely unexpected, problems. Scatter was
observed to be influenced by cyclic life for both titanium alloys and steels. The latter material
also tended to vary with type of steel and/or strength range. However, a central tendency
value for the shape parameter for titanium would appear to be a = 3.0, with the exception of
the long-life, constant-amplitude data, i.e., lives >4 .(10) 5 cycles. Most current structural
components, when subjected to some equivalent constant-amplitude cycle such as a ground-
air-ground cycle, perform below this level of life. Details such as turbine blades, rotor blades,
etc., are obviously not included. It is suggested, therefore, that a shape parameter of a= 3.0
will cover most titanium applications.

Steels apparently need to be treated in a different manner. It has been shown that the
shape parameter is influenced by both strength level and life length. Therefore, no unique
value such as that suggested above for titanium or in reference 1 for aluminum can be justi-
fied. However, again limiting the application to lives below 4. (10) 5 cycles, it might be suf-
ficient to assume a minimum of two shape parameters, see table II, as follows:

a = 3.0 for steels with ultimate strength < 240 ksi

ct = 2.2 for steels with ultimate strength > 240 ksi

6



SECTION III

EVALUATION OF DISTRIBUTION MODELS FOR FATIGUE VARIABILITY

Another item of investigation has been directed toward the further definition of the dis-
tribution model for representing structural fatigue performance variability. Because of the lack
of large samples of data suitable for definition of the basic fatigue variability distribution, and
the associated initial appearance of fatigue damage in a large number of details, as may be
found in a fleet of aircraft, attention is focused on the possible use of many groups of data
with only a very small number of details in each group. The tacit assumption is made that all
groups of qualified data, especially full-scale structures, represent random selections from
some general distribution which has a unique shape parameter (reference 1). The scale or loca-
tion parameter varies from group to group. No single group of available fatigue data is large
enough to indicate the "Right" or "Wrong" distribution over a wide range. Therefore, the
hundreds of groups of collected, sorted, and qualified data must be combined in some way
that will be independent of the scale parameters. To account for sampling errors, the behavior
of the actual data must be compared with the behavior of an equal mass of data generated
from the candidate distribution functions. One way to accomplish this in general applications
is by resorting to Monte-Carlo simulation techniques.

The specific approach used for this study was based on the sample statistic:

yi = vrn -/ ( n - I ) (xi -X)

where n = complete, uncensored sample size (i.e., no censored samples acceptable).

xi  logl0 ti, with t, = ith fatigue life

= (1/n) Ex i

This statistic y is the specimen deviation and has been adopted because it possesses several
desirable properties. These are:

" It is fairly simple

" It has scalar invariance

* It has similar shape parameter as x

" When x is normal with parameters (p and a) then y is normal with parameters (zero
and a).

* If x has variance o 2, then y has variance 2

This is proved in appendix I.
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The calculation of the statistic, yi, and the development of the cumulative frequency
distribution of that statistic, was computerized to minimize the manual work. To judge the fit
of the test data to a specific type of theoretical distribution, a Monte-Carlo simulation tech-
nique generated equivalent "empiric" cumulative distributions from populations of the
matched theoretical distribution. In order that these generated curves should represent similar
levels of sampling error as those contained in the fatigue data, they comprise groups of obser-
vations of identical size and number as those contained in the real data. For example, if the
fatigue data contained 500 groups of two specimens each, 400 groups of three specimens each,
and 200 groups of four specimens each, giving a total of 1100 groups and 3000 specimens,
then similar samplings comprising 3000 random observations would be taken from the defined
distribution to generate the "empiric" curve. Breakdowns of the group sizes of the actual
fatigue data studied are given in tables VI and VII.

The initial attempt at this procedure was made using the aluminum full-scale structural
data of reference 1. These comprised 392 uncensored groups containing 1140 specimens rang-
ing from large structural panels to complete structures. These specimens were subjected to
testing procedures varying between simple constant-amplitude and complex variable-amplitude
test loading. The heavy line in figures 15 and 16 represents the cumulative distribution of the
1140 calculated specimen deviations (yi values). Emphasis is focused on the lower half of the
distribution. The two-parameter log-normal and Weibull distributions were used to generate
the empiric distributions shown superimposed on the data curves in figures 15 and 16, respec-
tively. In order to randomly sample a theoretical distribution which was equivalent to the
fatigue data distribution, the parameters defining both statistical models were established from
the test data results. The average of 10 separate runs through the sampling process, i.e., 10
separate sampling distributions from a log-normal population, is shown in figure 15. The
dotted lines represent the upper and lower limits resulting from the 10 samplings. It can be
seen that below the fifth percentile, the data and empiric curves diverge with the latter becom-
ing more and more unconservative. For comparison, figure 16 shows the results of a similar
sampling from a Weibull population. This shows a much better agreement at the lower extrem-
ities, and the data curve is seen to be encompassed by the upper limit of the 10 samplings. At
probabilities above the 5% level, both the log-normal and Weibull models perform adequately,
although it is noted that the latter remains in fractionally closer proximity with the data
curve.

The next study was limited to the collected and qualified aluminum variable-amplitude
data. Only those data noted to have scatter similar to that found under structural applications
were used. These comprised test results ranging from simple notched specimens to complete
structures subjected to either axial or flexural loading. A total of 210 uncensored groups con-
taining 1023 specimens were used to define the solid data curve shown in figures 17 and 18.
The same procedures described in the preceding paragraph were used to generate the empiric
log-normal and Weibull curves shown superimposed on the data in figures 17 and 18, respec-
tively. It can be seen that the same trends noted previously for structural data are repeated in
the case of the variable-amplitude data.

The mass of aluminum fatigue data qualified as acceptable (reference 1) and comprising
1374 uncensored groups containing 4952 fatigue test results have been analyzed and are
shown plotted in figures 19 and 20. Superimposed are the generated empiric log-normal and
Weibull curves. It should be noted that the 10 samplings used to obtain these curves represent
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almost 50,000 random observations from each distribution model. Once again, the improved
data fit obtained from the Weibull population is obvious, being noticeably better than the
log-normal curve at the lower tail and marginally better at the higher percentiles.

The preceding plots of fatigue test data distributions consistently display a hooking
characteristic at the extremities. Consequently, some effort was expended on determining the
nature of the test data comprising these tails. The test groups which contained fatigue obser-
vations at the tails had to be identified and studied for some indication of a consistent trend in
the wide scatter exhibited by these data. Approximately 12% of the total collected data
groups contained observations forming the distribution tails, of which about 7% reflect simply
larger than average scatter, while the other 5% were split almost equally between data con-
taining either low-time or high-time outliers. These higher scatter data groups were also noted
to be independent of material type, specimen configuration, or method of testing and were
obtained from a variety of sources. Because there was no apparent systematic idiosyncrasy
reflected in these data, it was decided that one further test be conducted.

The distribution of results from the full-scale aluminum alloy structural data has been
replotted in figure 21. A total of 18 of the 392 groups represented in the data curve were
found to contain observations that might be termed as either high-time or low-time outliers. It
could be argued that these data may represent samples from different populations and as such
might be biasing the investigation results. These 18 data groups were consequently deleted and
the remaining 374 groups reanalyzed using the same statistic described earlier. Figure 22
shows the distribution of results obtained after deletion of the outlier groups. The equivalent
distributions generated by sampling from a two-parameter Weibull and a log-normal popula-
tion are compared with the data results. Comparing figures 21 and 22 it can be seen that with
the omission of the 18 suspect groups the Weibull model becomes an even better representa-
tion of the data distribution, but the log-normal model still remains unconservative. It is also
interesting to note that the deletion of these few data groups (-- 5% of the sample) resulted in
a lowering of the sample standard deviation, s, from the original value of 0.172 to a new
value of 0.148.

Note that:

s Cl (11(11 - 1) a where fi = average number of specimens per group of m groups.

It can be concluded, therefore, that this further study has substantiated the earlier results
in reference 1 for aluminum alloy.

The preceding results have all demonstrated the poor correlation at the extreme tail
between the distribution of fatigue data and the distribution predicted by the log-normal
model. The correlation with a two-parameter Weibull distribution was notably better. These
observed trends can be further substantiated by available test data. Figure 23 is a copy of
figure 19, except that the lower tail of the data distribution has been isolated. Curve A is the
log-normal estimate based on all the fatigue data, see figure 19, but curve B could be the
expected prediction if only the data within the heavily outlined box were considered. The

9



ratio of the slopes of these two curves is approximately 2:1. In other words, the shape para-
meter based on the data extremes only will be approximately twice the expected value. Con-
sider now the test results of reference 2, where both central tendency and extreme fatigue
data were generated. With the assumption of a log-normal distribution the following ratios of
shape parameters were obtained (table VIII):

Shape parameter for data extremes 0.098 ( ) 0.181
Shape parameter for central tendency data = 0.051 ( (case 2)

It is obvious from these results that the expected trend described in figure 23 is indeed
the case, and that the log-normal model is sensitive to the statistical nature of the test data.
Furthermore, this overestimate of the shape parameter (extreme data) results in estimates of
the scale parameter which are also too high, see table VIII. It should be noted that because of
specimen size and machine availability the data extremes were generated at approximately 300
cpm, whereas the central tendency data were obtained at 1800 cpm. Consequently, from data
in reference 3 it was expected that:

Scale parameter for data extremes < scale parameter for central tendency data

Consider now the results obtained with the assumption of a two-parameter Weibull distri-
bution. From figure 20 it can be seen that this model is capable of a fair representation of the
fatigue data, and therefore should not be unduly affected by the statistical location of a data
sample. Once again, this trend is substantiated by the test results of reference 2 summarized in
table VIII. The shape parameter estimates of extreme and central tendency data are within
7-1/2% of each other at worst; also, the predicted scale parameters of the extreme data tests
are slightly below the central tendency results and so conform with the frequency trends
established in reference 3.

Figure 24 shows once again the distribution of the 4952 test data. Superimposed are the
averages of 10 Monte-Carlo simulations from equivalent log-normal, two-parameter Weibull,
and three-parameter Weibull distributions. The minimum life term of the three-parameter
Weibull was arbitrarily selected at approximately 10% of the characteristic life for this study.
Note the generally similar behavior of all three distributions at the high percentiles and the
general divergence from the fatigue data. It is also noted that the fatigue data follow a some-
what symmetrical S shape, which the two-parameter Weibull fits fairly well except at the
upper tail. Therefore, the possibility of modifying the Weibull distribution to reflect the
symmetry of the fatigue data was considered. A first attempt at this was done by accepting
the lower 50% of the Weibull distribution and replacing the upper 50% by the mirror image of
the lower half.

The cumulative frequency function of this distribution is defined in terms of the median
time to failure, as follows:

F(x) = 2 -(x/M) = e "ln 2(x/M) when x < M

and

F(x) = 1 - 2 -(M/x) = 1 - e-1 n2(M/x) when x > M

10



This failure model is noted to be one of a class of distributions in which the logarithms of
the observations have distributions which are symmetric about zero. Some initial work on this
distribution model will be reported in reference 4.

Figure 25 shows the distribution of the 4952 qualified aluminum fatigue test data. Super-
imposed are the results of 10 Monte-Carlo simulations from an equivalent "symmetric-
Weibull" population. It can be seen that the shape of the "empiric" curve is approaching that
of the fatigue data but is insufficiently skewed to overlap the data. Some additional work will
be necessary to determine the feasibility of incorporating a rotation parameter in this distri-
bution model.

Finally, figures 26 and 27 describe the distribution obtained from 983 groups of col-
lected and qualified titanium fatigue data. These groups contained a total of 2715 test speci-
mens and were grouped as shown in table VII. The superimposed empiric curves show the
same trends observed with the aluminum data, namely, the improved fit obtained from the
sampling of an equivalent two-parameter Weibull population over that obtained from an equiv-
alent log-normal population.

11



SECTION IV

CONCLUSIONS

A statistical study of the scatter in titanium alloy and steel fatigue test data has been

made to guide the selection of a distribution and its shape parameter for application to a

fatigue reliability analysis approach. The merit of the particular distributional models was

judged by the comparison of cumulative frequency distributions of the test data and the range

of 10 similar-sized empirical distributions selected by Monte-Carlo techniques from the

analytical distribution function population matched to the data.

The study on the scatter in titanium and high-strength steel fatigue performance data was

limited to:

" Current, structurally applicable alloys

* The notched configurations, including monolithic notched and simple structural

simulators such as lap and butt joints

* Axially loaded or flexurally loaded tests

" Constant-amplitude or variable-amplitude tests

1. The results of the investigation have demonstrated that the estimated mean shape para-
meters are sensitive to:

" Range of cyclic test life-both titanium and steel show that scatter increases with
increasing test life

" Range of strength-the steel data show an increase in scatter as the material's
strength increases

" Type of steel

2. The results of the investigation have also demonstrated that the estimated mean shape
parameters are relatively insensitive to:

* Type of specimen, whether simply notched or a structural simulator

* Test temperature, whether at room or elevated temperatures

3. Average values of the Weibull shape parameter have been tentatively suggested as:

* a = 3.0 for titanium applications

12



" a = 3.0 for steel which has an ultimate strength < 240 ksi

* c = 2.2 for steel which has an ultimate strength > 240 ksi

but should be treated with a degree of caution because of the interdependence of scatter
with cyclic life.

4. Both the log-normal and the two-parameter Weibull distributions are capable of describ-
ing the fatigue data between the fifth and 95th percentiles.

5. In the important region of the early failure, i.e., below the fifth percentile, the log-
normal model produces an optimistic assessment of the fatigue data distribution.

6. The two-parameter Weibull model is capable of an acceptable representation of the
fatigue performance data distribution below the fifth percentile.

7. Above the 95th percentile, the log-normal, the two-parameter, and the three-parameter
Weibull distribution all produce conservative assessments of the fatigue data.

8. A modification to the Weibull distribution, introducing a mirror image about the median
time to failure, gives promise of being able to describe fatigue data over the complete
range.

13
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Table 11.-Results of Analyses Determining the Typical Shape Parameters
for Fatigue Performance of High-Strength Steels

All data

Data description Number 1

of groups

Alloy steels 168 0.339 2.95

Intermediate alloys 111 0.433 2.31

18% Ni maraging steels 113 0.485 2.06

Stainless steels 314 0.304 3.29

Austenitic stainless steel 48 0.207 4.83

Air melted 44 0.306 3.27

Vacuum melted 94 0.397 2.52

0-100 ksi 43 0.296 3.38

101-160 ksi 43 0.193 5.18

161-200 ksi 131 0.240 4.17

201-240 ksi 285 0.316 3.16

241-280 ksi 132 0.455 2.20

281-320 ksi 83 0.468 2.14

321-360 ksi - - -

Monolithic notched 488 0.368 2.72

Structures - - -

Structure simulators 282 0.322 3.11

Room temperature 613 0.354 2.82

Elevated temperature 115 0.392 2.55

Low temperature Negligible - -

Constant amplitude 770 0.352 2.84

Variable amplitude Negligible - -

All data 770 0.352 2.84

102-103 cycles 143 0.157 6.37

103-104 cycles 127 0.267 3.75

104 -61(10)4 cycles 265 0.387 2.58

6-(10)4-4-(10) 5 cycles 189 0.452 2.21

>4 "(10)5 cycles 46 0.585 1.71
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Table / V.- Typical Shape Parameters for Fatigue Performance of Stainless
Steels Varying with Strength (i) and Life (ii)

Stainless steels

Data description Number 1/a a

of groups

All data 314 0.304 3.29
(i) 0-100 ksi Negligible - -

101-160 ksi - - -

161-200 ksi 91 0.199 5.03
201-240 ksi 204 0.345 2.90

241-280 ksi - - -

281-320 ksi Negligible -

321-360 ksi - -

(ii) 102.103 cycles 66 0.154 6.49
103_104 cycles 49 0.254 3.94
104 -6"(10)4 cycles 109 0.361 2.77
61(10)4-4*(10)5 cycles 66 0.296 3.38
>4 (10) 5 cycles 24 0.554 1.81

Table V.- Typical Shape Parameters for Fatigue Performance of High-Strength
Steels with Strengths Equal to or Less Than 240 ksi (i)

and Greater Than 240 ksi (ii)

All data

Data description Number

of groups

(i) Strength < 240 ksi 502 0.285 3.51
102.103 cycles 98 0.159 6.29
103.104 cycles 72 0.236 4.24
104-6*(10) 4 cycles 157 0.312 3.21
6 (10)4-4*(10)5 cycles 135 0.297 3.37
>4* (10)5 cycles 40 0.516 1.94

(ii) Strength >240 ksi 215 0.460 2.17
102.103 cycles 45 0.154 6.49
103-104 cycles 43 0.309 3.24
104-6 *(10 )4 cycles 82 0.523 1.91
6-(10)4-4-(10)5 cycles 39 0.765 1.31
>4,(10)5 cycles Negligible - -
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Table V1I.-Titanium Alloy Data Sample

All data, N < 4.(10) 5 cycles

Groups in Specimens in Total specimens
data sample each group in data sample

520 2 1040
316 3 948

80 4 320
44 5 220

9 6 54
4 7 28
2 8 16
2 9 18
1 10 10
2 11 22
2 12 24
1 15 15

983 2715

Table VIII.-Comparison of Estimates from Extreme and Central Tendency Fatigue Data

Using Two Different Distribution Models

Maximum likelihood estimates of:

Shape parameter Scale parameter Remarks

Log-normal Weibull Log-normal Weibull
a Ot

Central tendency fatigue data 0.051 10.85 54,000 56,900
Drill entry
side holes

Fatigue data extremes 0.098 10.1 57,000 52,000

Central tendency fatigue data 0.082 5.55 49,100 53,250
Drill exit
side holes

Fatigue data extremes 0.181 5.26 59,500 50,200

Ref. AFML-TR-70-157 Aug. 1970 (Table 9)
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APPENDIX I

PROOF OF DISTRIBUTION EVALUATION STATISTIC

Let 92 be a class of functions defined as follows:

4 e S2 iff 0 is a monotone increasing odd map of the real life onto itself which is
twice differentiable and such that

Say that the log-life variate X is 4-normal iff there exist constants aX, v and a function

4 e 92 such that

(1/c) 4 (x-P) - N(0,1) (2)

The idea is that for each prescribed stress level Q, there is a function 4, which depends
upon R, which is in 2.

Note that if the log-life X is 4-normal as in (2), then

EX = P,

var(X) = E[ 1 (aZ)] 2 = gVj(0 )  (3)

where Z is the standard normal variate, and

E4 2 (X -/) = a 2 . (4)

The proof follows from (2) since X = v + 0-1 (aZ) and 4 being 1-1 and odd (then so is
its inverse), implying that E4 "1 (aZ) = 0. The formulas (3) and (4) are immediate.

Lemma: If xi, i-I, . . . ,n, are independent observations with meanya and variance cr2, then

yi = vrn/(n - 1) (xi - K), i= l 1. .. ,n

are a set of dependent observations but with zero mean and variance 02.

Proof: Clearly Ey i = 0. Hence it is seen that

var(yi) = n var(x i - n 1 var 6ik Xk

n 1 [- 1 2 +n_ =023
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Note that all the properties that are used in the calculation with the y's are contained
in the more general definition:

n
Yi = E aikxk

k= 1

where

Z aik = 0, ak = 1, aik = aki

k k

In fact, the specification that has been made is

aik =)(ik n

where 6 ik is the Kronecker delta.

For given j-1, . . . m make xI,, i1, . . . nj be independent log-life variates which are
i-normal with mean P but common shape parameter a. In order to eliminate the different
location parameters, consider the statistic

yij =Vnj/(nj - l)xij - x.j), i=l, . . . ,nj, j=1, . m..

where the dot indicates the index being averaged over. Note that y.j = 0 and consider the
sample variances

nj nj (Xij-x.) 2

f (Yij-y.j) 2 = I -sy ij=lI i=l nj-1

Y2 n 1 nJ*J j nj -1

nn-
Sj 2 n E (xj -x.j)2 =2X njIl nj Syj

From the preceding lemma it follows that Es2. = 2 and hence
yj

Es2. = (nj- 1)0 2 /nj.

Suppose that 4' is the identity function, i.e., fatigue life is log-normal, then

var(s 2 .) = var _- j: j ; xj = var _ 2 nj-
YJ nj -1I j=1 aInUl~

o4 2(n - 1) 2,g 4

(nj- 1)2  nj- F
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Here use has been made of the fact that the squared deviation from the sample mean of
ni standard normal variates has a chi-square distribution with (n. - 1) degrees of freedom. It
is also recalled that the variance of a chi-square variate is twice te number of degrees of
freedom.

Therefore, in the case where fatigue life is log-normal, to obtain a minimum variance
unbiased estimate of a2 using s2j, merely form

m m
2 Z 2

J=l (ni- )s = j=l njSx
m mI (nj -1) Z (nj -1)

j=l j=l

As a check that the estimate obtained is as claimed, form another estimate by putting all
yij together to form

y =: (. yij - y)/2:nj

i

where y = I Yij/Enj = 2 njy.j = 0. Now
Ii J

m nj nj mS y2 / 2 ; n= ME x2(j - X.)/ Z njy ij U j j l T xi- xj7
Uj=l i=l i j=I

m n2s2. m
X JxJ/ 2 nj.

j=l J j=1

Note that Es2 = 2 . Hence this is also an unbiased estimate of a2 , but sincey

m (nj 2 \ 2
var(s2 ) = 2 vars2 / vars

j=l \nj-/ xi (

m nj2  m 2
= 20 4 Z; /(21 nj)

j=1 . j=l
it is claimed that var(a2) < var(s 2 ) since

1 m 2
m < - / (2;nj) 2
E (nj-1) j=l n -1

j=l

which can be seen by cross-multiplication and applying Schwarz's inequality.
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APPENDIX II

LISTED VALUES OF FATIGUE-LIFE OBSERVATIONS
FOR ALL COLLECTED DATA (INCLUDING SOURCES)

TABULATED RESULTS

This appendix tabulates the item number, data reference, data description, and all the
individual observations from the collected fatigue data. The individual observation is categor-
ized as either a failed or a suspended item. Also listed on the output are the test sample size,
the number of failed items, and the number of suspended items. A 13-digit description code
(see below) is provided to catalog the variables of melting process, strength range, specimen
thickness, material, grain direction, type of structure, type of specimen, finish, type of load-
ing, and testing peculiarities.

The selection of reference numbers for the data sources is to some extent arbitrary. They
have been arranged so as to allow the addition of new sources to the data bank. Reference
numbers 200-300 have been reserved for titanium sources and 301-399 for steel sources. Ref-
erence numbers 1-199 were selected earlier for a data bank on aluminum alloy and reported
elsewhere (reference 1).

Finally, a complete listing of the data references is presented, and corresponds with the
REF column of the computer printout.

DESCRIPTION CODE

Column Number Variable Description

1 melting process
2 strength range

3 - 5 specimen thickness
6- 7 material

8 grain direction
9 type of structure

10 type of specimen
11 finish
12 type of loading
13 test peculiarities

Possible Inputs for Description Code

Column I -melting process

0 unknown
1 air melted
2 vacuum melted
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Column 2-strength range

0 unknown
1 0tO100ksi
2 101to160 ksi
3 161 to 200 ksi
4 201 to 240 ksi
5 241 to 280 ksi
6 281 to 320 ksi
7 321 to 380 ksi

Columns 3-5-specimen thickness (thickness of minimum or fractured material or
specimen diameter (10 - 3 inches))

000 thickness not known or variable

Columns 6-7-materials

01 2024-T3 bare
02 2024-T3 clad
03 2024-T3 EXTR
04 2024-T4 bare
05 2024-T4 clad
06 2024-T4 EXTR
07 none assigned
08 6061-T6
09 none assigned
10 7075-T6 bare
11 7075-T6 clad
12 7075-T6 EXTR
13 7075-T6 die-forged
14 7076-T6 bare
15 7076-T6 clad
16 7076-T6 EXTR
17 7079-T6 bare
18 7079-T6 clad
19 7079-T6 EXTR
20 7178-T6 bare
21 7178-T6 clad
22 7178-T6 EXTR
23 7076-T61
24 AISI-301
25 A286 (fastener steel)
26 general steels (others)
27 DTD 687A Al alloy
28 2024-0 (annealed)
29 1100
30 DTD 363A
31 DTD364B EXTR
32 DTD 683 (RR. 77) EXTR
33 DTD 546B clad
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Columns 6-7 (continued)

34 DTD 610 clad
35 normalized alloy steel (Swedish specification) < 100 ksi
36 AlS14130
37 AISI 4330
38 AISI 4340
39 300M
40 D6A
41 5Cr-Mo-V (H 11)
42 9Ni-4Co-0.20C
43 9Ni-4Co-0.25C
44 9Ni-4Co-0.30C
45 9Ni-4Co-0.45C
46 intermediate alloy steel (others)
47 Hastelloy X
48 Inconel X
49 Rene 41
50 superalloy steel (others)
51 2024 skin and 2024 stiffener
52 2024 skin and 2024 stiffener and other additional materials
53 2024 skin and 7075 stiffener
54 2024 skin and 7075 stiffener and other additional materials
55 7075 skin and 7075 stiffener
56 7075 skin and 7075 stiffener and other additional materials
57 none assigned
58 7178 skin and 7178 stiffener
59 7178 skin and 7178 stiffener and other additional materials
60 Ti alloy 6A1-4V mill annealed (condition 1) sheet
61 Ti alloy 6A1-4V mill annealed (condition 1) plate
62 Ti alloy 6A1-4V mill annealed (condition 1) extrusion
63 Ti alloy 6A1-4V mill annealed (condition 1) forging
64 Ti alloy 6A1-4V duplex annealed (condition V) sheet
65 Ti alloy 6AI-4V duplex annealed (condition V) plate
66 Ti alloy 6A1-4V solution treated and aged (condition III) sheet
67 Ti alloy 6A1-4V solution treated and aged (condition III) plate
68 Ti alloy 6A1-4V solution treated and aged (condition III) extrusion
69 Ti alloy 6A1-4V solution treated and aged (condition III) forging
70 Ti alloy 6A1-4V solution treated and overaged plate
71 Ti alloy 6A1-4V solution treated and overaged extrusion
72 Ti alloy 6A1-4V solution treated and overaged forging
73 Ti alloy 6A1-4V rolled sheet-continuously annealed
74 Ti alloy 8A]-I Mo-IV mill-annealed sheet
75 Ti alloy 8AI-IMo-IV mill-annealed plate
76 Ti alloy 8AI- 1 Mo- IV mill-annealed extrusion
77 Ti alloy 8AI- I Mo- IV mill-annealed forging
78 Ti alloy 8AI-1 Mo-I V duplex-annealed sheet
79 Ti alloy 8AI-IMo-IV duplex-annealed plate
80 Ti alloy 8AI- I Mo- 1 V duplex-annealed extrusion
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Columns 6-7 (continued)

81 Ti alloy 8AI-IMo-IV duplex-annealed forging
82 Ti alloy 8AI-IMo-IV triplex-annealed sheet
83 18% Ni maraging steel (200)
84 18% Ni maraging steel (250)
85 18% Ni maraging steel (300)
86 none assigned
87 2014-T6 hand-forged
88 7075-T6 hand-forged
89 7079-T6 hand-forged
90 AM 350
91 17-7 PH
92 PH 15-7 Mo
93 17-4 PH
94 AM 355
95 15-5 PH
96 PH B-8 Mo
97 custom 455 (fastener)
98 stainless steels (others)

99 alloy steels (others)

Column 8-grain direction

0 grain direction not known

2
3 none assigned
4
5

6 diagonal
7 other directions
8 longitudinal
9 short transverse

Column 9-type of structure

0 lugs
I butt joint
2 lap joint
3 double shear
4 scarf joint
5 monolithic unnotched
6 monolithic notched
7 partial load transfer

8 structural components and full-scale structures
9 service airplanes
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Column 1 0-type of specimen

0 open holes
1 riveted
2 spotwelded
3 bolted
4 riveted and bonded
5 edge notched
6 pin connected
7 riveted and bolted
8 bonded
9 others

Column 11-finish

0 normal
1 shot peened
2 chemically milled
3 corroded
4 machine milled and polished
5 chemically milled and shot peened
6 chemically milled and polished
7 different etchants
8 others
9 heat treated

Column 12-type of loading

0 axial (comp-comp)
I axial (other types)
2 bending flexural
3 bending rotating beam
4 torsion
5 spectrum (random)
6 spectrum (decreasing stress amplitude)
7 spectrum (increasing)
8 spectrum (up and down stress)
9 sonic fatigue

Column 13-test peculiarities

0 complete failure-test at room temperature
1 first crack-test at room temperature
2 none assigned
3 none assigned
4 first crack-test with temperature cycles also
5 none assigned
6 complete failure-test at elevated temperature
7 first crack-test at elevated temperature
8 complete failure-test at lowered temperature
9 first crack-test at lowered temperature
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